Oil & Gas
Successor Uncertainties: Exploration and Uncertainty in Temporal Difference Learning
David Janz, Jiri Hron, Przemysław Mazur, Katja Hofmann, José Miguel Hernández-Lobato, Sebastian Tschiatschek
Posterior sampling for reinforcement learning (PSRL) is an effective method for balancing exploration and exploitation in reinforcement learning. Randomised value functions (RVF) can be viewed as a promising approach to scaling PSRL. However, we show that most contemporary algorithms combining RVF with neural network function approximation do not possess the properties which make PSRL effective, and provably fail in sparse reward problems. Moreover, we find that propagation of uncertainty, a property of PSRL previously thought important for exploration, does not preclude this failure. We use these insights to design Successor Uncertainties (SU), a cheap and easy to implement RVF algorithm that retains key properties of PSRL. SU is highly effective on hard tabular exploration benchmarks. Furthermore, on the Atari 2600 domain, it surpasses human performance on 38 of 49 games tested (achieving a median human normalised score of 2.09), and outperforms its closest RVF competitor, Bootstrapped DQN, on 36 of those.
AdaTune: Adaptive Tensor Program Compilation Made Efficient
Deep learning models are computationally intense, and implementations often have to be highly optimized by experts or hardware vendors to be usable in practice. The DL compiler, together with Learning-to-Compile has proven to be a powerful technique for optimizing tensor programs. However, a limitation of this approach is that it still suffers from unbearably long overall optimization time. In this paper, we present a new method, called AdaTune, that significantly reduces the optimization time of tensor programs for high-performance deep learning inference. In particular, we propose an adaptive evaluation method that statistically early terminates a costly hardware measurement without losing much accuracy. We further devise a surrogate model with uncertainty quantification that allows the optimization to adapt to hardware and model heterogeneity better. Finally, we introduce a contextual optimizer that provides adaptive control of the exploration and exploitation to improve the transformation space searching effectiveness. We evaluate and compare the levels of optimization obtained by AutoTVM, a stateof-the-art Learning-to-Compile technique on top of TVM, and AdaTune. The experiment results show that AdaTune obtains up to 115% higher GFLOPS than the baseline under the same optimization time budget.
Time-MMD: Multi-Domain Multimodal Dataset for Time Series Analysis
Time series data are ubiquitous across a wide range of real-world domains. While real-world time series analysis (TSA) requires human experts to integrate numerical series data with multimodal domain-specific knowledge, most existing TSA models rely solely on numerical data, overlooking the significance of information beyond numerical series. This oversight is due to the untapped potential of textual series data and the absence of a comprehensive, high-quality multimodal dataset. To overcome this obstacle, we introduce Time-MMD, the first multi-domain, multimodal time series dataset covering 9 primary data domains. Time-MMD ensures fine-grained modality alignment, eliminates data contamination, and provides high usability. Additionally, we develop MM-TSFlib, the first-cut multimodal time-series forecasting (TSF) library, seamlessly pipelining multimodal TSF evaluations based on Time-MMD for in-depth analyses. Extensive experiments conducted on Time-MMD through MM-TSFlib demonstrate significant performance enhancements by extending unimodal TSF to multimodality, evidenced by over 15% mean squared error reduction in general, and up to 40% in domains with rich textual data. More importantly, our datasets and library revolutionize broader applications, impacts, research topics to advance TSA.
BPQP: A Differentiable Convex Optimization Framework for Efficient End-to-End Learning Jianming Pan
Data-driven decision-making processes increasingly utilize end-to-end learnable deep neural networks to render final decisions. Sometimes, the output of the forward functions in certain layers is determined by the solutions to mathematical optimization problems, leading to the emergence of differentiable optimization layers that permit gradient back-propagation. However, real-world scenarios often involve large-scale datasets and numerous constraints, presenting significant challenges. Current methods for differentiating optimization problems typically rely on implicit differentiation, which necessitates costly computations on the Jacobian matrices, resulting in low efficiency. In this paper, we introduce BPQP, a differentiable convex optimization framework designed for efficient end-to-end learning.
Space-Time Continuous PDE Forecasting using Equivariant Neural Fields
Recently, Conditional Neural Fields (NeFs) have emerged as a powerful modelling paradigm for PDEs, by learning solutions as flows in the latent space of the Conditional NeF. Although benefiting from favourable properties of NeFs such as grid-agnosticity and space-time-continuous dynamics modelling, this approach limits the ability to impose known constraints of the PDE on the solutions - e.g.
Appendices to " Lifelong Policy Gradient Learning of Factored Policies for Faster Training Without Forgetting "
OpenAI Gym MuJoCo domains The hyper-parameters for NPG were manually selected by running an evaluation on the nominal task for each domain (without gravity or body part modifications). We tried various combinations of the number of iterations, number of trajectories per iteration, and step size, until we reached a learning curve that was fast and reached proficiency. Once these hyperparameters were found, they were used for all lifelong learning algorithms. For LPG-FTW, we chose typical hyper-parameters and held them fixed through all experiments, forgoing potential additional benefits from a hyper-parameter search. The only exception was the number of latent components used for the Walker-2D body-parts domain, as we found empirically that k = 5 led to saturation of the learning process early on.
Randomized Exploration in Cooperative Multi-Agent Reinforcement Learning
We present the first study on provably efficient randomized exploration in cooperative multi-agent reinforcement learning (MARL). We propose a unified algorithm framework for randomized exploration in parallel Markov Decision Processes (MDPs), and two Thompson Sampling (TS)-type algorithms, CoopTS-PHE and CoopTS-LMC, incorporating the perturbed-history exploration (PHE) strategy and the Langevin Monte Carlo exploration (LMC) strategy respectively, which are flexible in design and easy to implement in practice.
Small steps no more: Global convergence of stochastic gradient bandits for arbitrary learning rates
We provide a new understanding of the stochastic gradient bandit algorithm by showing that it converges to a globally optimal policy almost surely using any constant learning rate. This result demonstrates that the stochastic gradient algorithm continues to balance exploration and exploitation appropriately even in scenarios where standard smoothness and noise control assumptions break down. The proofs are based on novel findings about action sampling rates and the relationship between cumulative progress and noise, and extend the current understanding of how simple stochastic gradient methods behave in bandit settings.
84ca3f2d9d9bfca13f69b48ea63eb4a5-Paper-Conference.pdf
Motivated by the neuromorphic principles that regulate biological neural behaviors, PPLNs are ideal for processing data captured by event cameras, which are built to simulate neural activities in the human retina. We discuss how to represent the membrane potential of an artificial neuron by a parametric piecewise linear function with learnable coefficients. This design echoes the idea of building deep models from learnable parametric functions recently popularized by Kolmogorov-Arnold Networks (KANs). Experiments demonstrate the state-of-the-art performance of PPLNs in event-based and image-based vision applications, including steering prediction, human pose estimation, and motion deblurring.